3.3V 128K $\times 32$ / 36 pipeline burst synchronous SRAM

Features

- Organization: 131,072 words $\times 32$ or 36 bits
- Fast clock speeds to 166 MHz in LVTTL/ LVCMOS
- Fast clock to data access: 3.5/ $4.0 / 5.0 \mathrm{~ns}$
- Fast OE access time: 3.5/ 4.0/ 5.0 ns
- Fully synchronous register-to-register operation
- Single register flow-through mode
- Dual-cycle deselect
- Single-cycle deselect also available (AS7C33128PFS32A/ AS7C33128PFS36A)
- Asynchronous output enable control
- Economical 100-pin TQFP package

Logic block diagram

- Byte write enables
- Multiple chip enables for easy expansion
- 3.3 core power supply
- 2.5 V or $3.3 \mathrm{~V} \mathrm{I/} 0$ operation with separate $\mathrm{V}_{\text {DDQ }}$
- 30 mW typical standby power in power down mode
- NTD ${ }^{\text {mM }} 1$ pipelined architecture available (AS7C33128KNTD32A/ AS7C33128NTD36A)

1 NTD $^{T M}$ is a trademark of Alliance Semiconductor Corporation. All trademarks mentioned in this document are the property of their respective owners.

Pin arrangement

Note: Pins 1,30,51,80 are NC for $\times 32$

Selection guide

	$\mathbf{- 1 6 6}$	$\mathbf{- 1 3 3}$	$\mathbf{- 1 0 0}$	Units
Minimum cycle time	6	7.5	10	ns
Maximum clock frequency	166	133	100	MHz
Maximum pipelined clock access time	3.5	4	5	ns
Maximum operating current	475	425	325	mA
Maximum standby current	130	100	90	mA
Maximum CMOS standby current (DC)	30	30	30	mA

Functional description

The AS7C33128PFD32A and AS7C33128PFD36A are high-performance CMOS 4-M bit synchronous Static Random Access Memory (SRAM) devices organized as 131,072 words $\times 32$ or 36 bits, and incorporate a two-stage register-register pipeline for highest frequency on any given technology.
Fast cycle times of $6.0 / 7.5 / 10 \mathrm{~ns}$ with clock access times (t_{CD}) of $3.5 / 4.0 / 5.0 \mathrm{~ns}$ enable 166,133 and 100 MHz bus frequencies. Three chip enable (CE) inputs permit easy memory expansion. Burst operation is initiated in one of two ways: the controller address strobe (ADSC), or the processor address strobe (ADSP). The burst advance pin (ADV) allows subsequent internally generated burst addresses.

Read cycles are initiated with ADSP (regardless of WE and ADSC) using the new external address clocked into the on-chip address register when ADSP is sampled low, the chip enables are sampled active, and the output buffer is enabled with $\overline{O E}$. In a read operation the data accessed by the current address, registered in the address registers by the positive edge of CLK, is carried to the data-out registers and driven on the output pins on the next positive edge of CLK. ADV is ignored on the clock edge that samples ADSP asserted, but it is sampled on all subsequent clock edges. Address is incremented internally for the next access of the burst when ADV is sampled low, and both address strobes are high. Burst mode is selectable with the LBO input. With LBO unconnected or driven high, burst operations use an interleaved count sequence. With LBO driven low, the device uses a linear count sequence.

Write cycles are performed by disabling the output buffers with $\overline{O E}$ and asserting a write command. A global write enable GWE writes all 32/ 36 bits regardless of the state of individual BW[a:d] inputs. Alternately, when GWE is high, one or more bytes may be written by asserting BWE and the appropriate individual byte BWn signals.

BWn is ignored on the clock edge that samples ADSP low, but it is sampled on all subsequent clock edges. Output buffers are disabled when $B W n$ is sampled low (regardless of $\overline{\mathrm{E}}$). Data is clocked into the data input register when BWn is sampled low. Address is incremented internally to the next burst address if BWn and $\overline{A D V}$ are sampled low. This device operates in dual-cycle deselect feature during READ cycles.

Read or write cycles may also be initiated with $\overline{\text { ADSC }}$ instead of $\overline{A D S P}$. The differences between cycles initiated with $\overline{A D S C}$ and $\overline{A D S P}$ follow.

- ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC.
-WE signals are sampled on the clock edge that samples ADSC low and ADSP high.
- Master chip enable CEO blocks ADSP, but not ADSC.

AS7C33128PFD32A and AS7C33128PFD36A family operates from a core 3.3V power supply. I/ Os use a separate power supply that can operate at 2.5 V or 3.3 V . These devices are available in a 100 -pin $14 \times 20 \mathrm{~mm}$ TQFP package.

Capacitance

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	$\mathrm{C}_{I N}$	Address and control pins	$\mathrm{V}_{I N}=0 \mathrm{~V}$	5	pF
$\mathrm{I} / 0$ capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{I} / 0$ pins	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	7	pF

Write enable truth table (per byte) ${ }^{1}$

GWE	BWE	BWn	WEn
L	X	X	L
H	L	X	T
H	H	H	F^{*}
H	L	F^{*}	

1 Key: $X=$ don't care. $L=$ low. $H=$ high. $T=$ true. $F=$ false. *= valid read. $n=a, b, c$, or $d . W E$ and $W E n=$ internal write signal.

Burst order

| | Interleaved burst order | | | | | Linear burst order
 LBO | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Starting address | 00 | 01 | 10 | 11 | Starting address | 00 | 01 | 10 | 11 |
| First increment | 01 | 00 | 11 | 10 | First increment | 01 | 10 | 11 | 00 |
| Second increment | 10 | 11 | 00 | 01 | Second increment | 10 | 11 | 00 | 01 |
| Third increment | 11 | 10 | 01 | 00 | Third increment | 11 | 00 | 01 | 10 |

Signal descriptions

Signal	I/ O	Properties	Description
CLK	I	CLOCK	Clock. All inputs except OE, FT, ZZ, LBO are synchronous to this clock.
A0-A16	I	SYNC	Address. Sampled when all chip enables are active and ADSC or ADSP are asserted.
DQ[a,b,c,c,d]	I/ O	SYNC	Data. Driven as output when the chip is enabled and OE is active.
CEO	I	SYNC	Master chip enable. Sampled on clock edges when ADSP or ADSC is active. When CEO is inactive, ADSP is blocked. Refer to the Synchronous Truth Table for more information. Synct
CE1, CE2	I	SYNC	Synchronous chip enables. Active high and active low, respectively. Sampled on clock edges when ADSC is active or when CE0 and ADSP are active.
ADSP	I	SYNC	Address strobe processor. Asserted low to load a new bus address or to enter standby mode.
ADSC	I	SYNC	Address strobe controller. Asserted low to load a new address or to enter standby mode.
ADV	I	SYNC	Advance. Asserted low to continue burst read/ write.
GWE	I	SYNC	Global write enable. Asserted low to write all 32/ 36 bits. When high, BWE and BW[a:d] control write enable.
BWE	I	SYNC	Byte write enable. Asserted low with GWE = high to enable effect of BW[a:d] inputs.
BW[a,b,c,d]	I	SYNC	Write enables. Used to control write of individual bytes when GWE = high and BWE $=$ low. If any of BW[a:d] is active with GWE = high and BWE = low the cycle is a write cycle. If all BW[a:d] are inactive the cycle is a read cycle.
OE	I	ASYNC	Asynchronous output enable. I/ O pins are driven when OE is active and the chip is in read mode.
LBO	I	STATIC default $=$ high	Count mode. When driven high, count sequence follows Intel XOR convention. When driven low, count sequence follows linear convention. This signal is internally pulled high
FT	I	STATIC	Flow-through mode.When low, enables single register flow-through mode. Connect to VDD if unused or for pipelined operation.
ZZ	I	ASYNC	Sleep. Places device in low power mode. Data is retained. Connect to GND if unused.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Power supply voltage relative to GND	$\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DDQ}}$	-0.5	+4.6	V
Input voltage relative to GND (input pins)	$\mathrm{V}_{\text {IN }}$	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Input voltage relative to GND (I/ O pins)	$\mathrm{V}_{\text {IN }}$	-0.5	$\mathrm{~V}_{\mathrm{DDQ}}+0.5$	V
Power dissipation	P_{D}	-	1.8	W
DC output current	$\mathrm{I}_{\text {OUT }}$	-	50	mA
Storage temperature (plastic)	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Temperature under bias	$\mathrm{T}_{\text {bias }}$	-65	+135	${ }^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect reliability.

Synchronous truth table

CE0	CE1	CE2	ADSP	ADSC	ADV	WEn	OE	Address accessed	CLK	Operation	DQ
H	X	X	X	L	X	X	X	NA	L to H	Deselect	Hi-Z
L	L	X	L	X	X	X	X	NA	L to H	Deselect	Hi-Z
L	L	X	H	L	X	X	X	NA	L to H	Deselect	Hi-Z
L	X	H	L	X	X	X	X	NA	L to H	Deselect	Hi-Z
L	X	H	H	L	X	X	X	NA	L to H	Deselect	Hi-Z
L	H	L	L	X	X	X	L	External	L to H	Begin read	Hi-Z
L	H	L	L	X	X	X	H	External	L to H	Begin read	Hi-Z
L	H	L	H	L	X	F	L	External	L to H	Begin read	Hi-Z
L	H	L	H	L	X	F	H	External	L to H	Begin read	Hi-Z
X	X	X	H	H	L	F	L	Next	L to H	Cont. read	Q
X	X	X	H	H	L	F	H	Next	L to H	Cont. read	Hi-Z
X	X	X	H	H	H	F	L	Current	L to H	Suspend read	Q
X	X	X	H	H	H	F	H	Current	L to H	Suspend read	Hi-Z
H	X	X	X	H	L	F	L	Next	L to H	Cont. read	Q
H	X	X	X	H	L	F	H	Next	L to H	Cont. read	Hi-Z
H	X	X	X	H	H	F	L	Current	L to H	Suspend read	Q
H	X	X	X	H	H	F	H	Current	L to H	Suspend read	Hi-Z
L	H	L	H	L	X	T	X	External	L to H	Begin write	D ${ }^{3}$
X	X	X	H	H	L	T	X	Next	L to H	Cont. write	D
H	X	X	X	H	L	T	X	Next	L to H	Cont. write	D
X	X	X	H	H	H	T	X	Current	L to H	Suspend write	D
H	X	X	X	H	H	T	X	Current	L to H	Suspend write	D

Key: $X=$ don't care. $L=$ low. $H=$ high.
${ }^{1}$ See "W rite enable truth table" on page 2 for more information.
${ }_{3}^{2}$ Q in flow-through mode.
${ }^{3}$ For write operation following a READ, OE must be high before the input data setup time and held high throughout the input hold time.
Recommended operating conditions

Parameter		Symbol	Min	Nominal	Max	Unit
Supply voltage		$V_{\text {DD }}$	3.135	3.3	3.6	V
		$\mathrm{V}_{S S}$	0.0	0.0	0.0	
3.3 V I/ 0 supply voltage		$V_{\text {DDQ }}$	3.135	3.3	3.6	V
		$V_{S S Q}$	0.0	0.0	0.0	
$2.5 \mathrm{~V} \mathrm{I} / \mathrm{O}$ supply voltage		$V_{\text {DDQ }}$	2.35	2.5	2.9	V
		$V_{S S Q}$	0.0	0.0	0.0	
Input voltages ${ }^{1}$	Address and control pins	$\mathrm{V}_{\text {IH }}$	2.0	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
		$\mathrm{V}_{\text {IL }}$	-0.5^{2}	-	0.8	
	I/ 0 pins	V_{IH}	2.0	-	$\mathrm{V}_{\mathrm{DDQ}}+0.3$	V
		$\mathrm{V}_{\text {IL }}$	-0.5 ${ }^{2}$	-	0.8	
Ambient operating temperature		T_{A}	0	-	70	${ }^{\circ} \mathrm{C}$

1 Input voltage ranges apply to $3.3 \mathrm{VI} / 0$ operation. For $2.5 \mathrm{~V} \mathrm{I/} 0$ operation, contact factory for input specifications.
$2 \mathrm{~V}_{\mathrm{IL}} \min .=-2.0 \mathrm{~V}$ for pulse width less than $0.2 \times \mathrm{t}_{\mathrm{RC}}$.

TQFP thermal resistance

Description	Conditions	Symbol	Typical	Units
Thermal resistance (junction to ambient) 1	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA/JESD51	θ_{JA}	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance (junction to top of case) ${ }^{1}$	W	θ_{JC}	8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1 This parameter is sampled.

DC electrical characteristics

Parameter	Symbol	Test conditions	-166		-133		-100		Unit
			Min	Max	Min	Max	Min	Max	
Input leakage current ${ }^{1}$	\| ILI	$V_{D D}=M a x, V_{I N}=G N D$ to $V_{D D}$	-	2	-	2	-	2	$\mu \mathrm{A}$
Output leakage current	$\mid \mathrm{l}$ LO ${ }^{\text {l }}$	$\begin{aligned} & \overline{O E} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{DD}} \end{aligned}$	-	2	-	2	-	2	$\mu \mathrm{A}$
Operating power supply current	$\mathrm{I}_{C C}{ }^{2}$	$\begin{gathered} \text { CEO }=V_{I L}, \text { CE1 }=V_{I H}, \text { CE2 }= \\ V_{I L} \\ f=f_{\text {Max }}, I_{\text {OUT }}=0 \mathrm{~mA} \end{gathered}$	-	475	-	425	-	325	mA
Standby power supply current	$\mathrm{I}_{\text {SB }}$	Deselected, $\mathrm{f}=\mathrm{f}_{\text {Max }}, \mathrm{ZZ} \leq \mathrm{V}_{\mathrm{IL}}$	-	130	-	100	-	90	mA
	$\mathrm{I}_{\text {SB1 }}$	Deselected, $\mathrm{f}=0, \mathrm{ZZ} \leq 0.2 \mathrm{~V}$ all $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	30	-	30	-	30	
	$\mathrm{I}_{\text {SB2 }}$	$\begin{gathered} \text { Deselected, } \mathrm{f}=\mathrm{f}_{\mathrm{Max}} \mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}- \\ 0.2 \mathrm{~V} \\ \text { All } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \text { or } \geq \mathrm{V}_{\mathrm{IH}} \end{gathered}$	-	30	-	30	-	30	
Output voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DDQ}}=3.465 \mathrm{~V}$	-	0.4	-	0.4	-	0.4	V
	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DDQ}}=3.135 \mathrm{~V}$	2.4	-	2.4	-	2.4	-	

1 LBO pin has an internal pull-up, and input leakage $= \pm 10 \mu \mathrm{a}$.
$2 I_{\text {CC }}$ given with no output loading. I CC increases with faster cycles times and greater output loading.

DC electrical characteristics for 2.5 V I/ 0 operation

Parameter	Symbol	Test conditions	-166		-133		-100		Unit	
			Min	Max	Min	Max	Min	Max		
Outputleakage current	\| Lo		$\begin{aligned} & 0 E \geq V_{I H}, V_{D D}=M a x, \\ & V_{O U T}=G N D \text { to } V_{D D} \end{aligned}$	-1	1	-1	1	-1	1	$\mu \mathrm{A}$
Output voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DDQ}}=2.65 \mathrm{~V}$	-	0.7	-	0.7	-	0.7	V	
	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}, \mathrm{~V}_{\text {DDQ }}=2.35 \mathrm{~V}$	1.7	-	1.7	-	1.7	-		

Timing characteristics over operating range

Parameter	Symbol	-166		-133		-100		Unit	Notes ${ }^{1}$
		Min	Max	Min	Max	Min	Max		
Clock frequency	$\mathrm{f}_{\text {Max }}$	-	166	-	133	-	100	MHz	
Cycle time (pipelined mode)	$\mathrm{t}_{\text {CYC }}$	6	-	7.5	-	10	-	ns	
Cycle time (flow-through mode)	$\mathrm{t}_{\text {CYCF }}$	10	-	12	-	12	-	ns	
Clock access time (pipelined mode)	$\mathrm{t}_{\text {CD }}$	-	3.5	-	4.0	-	5.0	ns	
Clock access time (flow-through mode)	$\mathrm{t}_{\text {CDF }}$	-	9	-	10	-	12	ns	
Output enable low to data valid	t_{OE}	-	3.5	-	4.0	-	5.0	ns	
Clock high to output low Z	$\mathrm{t}_{\text {LZC }}$	0	-	0	-	0	-	ns	2,3,4
Data output invalid from clock high	t_{OH}	1.5	-	1.5	-	1.5	-	ns	2
Output enable low to output low Z	t Lzoe	0	-	0	-	0	-	ns	2,3,4
Output enable high to output high Z	$\mathrm{t}_{\text {Hzoe }}$	-	3.5	-	4.0	-	4.5	ns	2,3,4
Clock high to output high Z	$\mathrm{t}_{\mathrm{HZC}}$	-	3.5	-	4.0	-	5.0	ns	2,3,4
Output enable high to invalid output	$\mathrm{t}_{\mathrm{OHOE}}$	0	-	0	-	0	-	ns	
Clock high pulse width	t_{CH}	2.4	-	2.5	-	3.5	-	ns	5
Clock low pulse width	t_{CL}	2.2	-	2.5	-	3.5	-	ns	5
Address setup to clock high	$\mathrm{t}_{\text {AS }}$	1.5	-	1.5	-	2.0	-	ns	6
Data setup to clock high	$\mathrm{t}_{\text {DS }}$	1.5	-	1.5	-	2.0	-	ns	6
W rite setup to clock high	tws	1.5	-	1.5	-	2.0	-	ns	6,7
Chip select setup to clock high	$\mathrm{t}_{\text {CSS }}$	1.5	-	1.5	-	2.0	-	ns	6,8
Address hold from clock high	$\mathrm{t}_{\text {AH }}$	0.5	-	0.5	-	0.5	-	ns	6
Data hold from clock high	t_{DH}	0.5	-	0.5	-	0.5	-	ns	6
Write hold from clock high	$\mathrm{t}_{\text {WH }}$	0.5	-	0.5	-	0.5	-	ns	6,7
Chip select hold from clock high	$\mathrm{t}_{\text {CSH }}$	0.5	-	0.5	-	0.5	-	ns	6,8
$\overline{\text { ADV setup to clock high }}$	$\mathrm{t}_{\text {ADVS }}$	1.5	-	1.5	-	2.0	-	ns	6
ADSP setup to clock high	$\mathrm{t}_{\text {ADSPS }}$	1.5	-	1.5	-	2.0	-	ns	6
ADSC setup to clock high	$\mathrm{t}_{\text {ADSCS }}$	1.5	-	1.5	-	2.0	-	ns	6
$\overline{\text { ADV hold from clock high }}$	$\mathrm{t}_{\text {ADVH }}$	0.5	-	0.5	-	0.5	-	ns	6
ADSP hold from clock high	$t_{\text {ADSPH }}$	0.5	-	0.5	-	0.5	-	ns	6
ADSC hold from clock high	$\mathrm{t}_{\text {ADSCH }}$	0.5	-	0.5	-	0.5	-	ns	6

[^0]
Key to switching waveform

Rising input \qquad Falling input

Undefined/ don't care

Timing waveform of read cycle

Note: $\dot{Y}=$ XOR when $L B O=$ high/ no connect. $\dot{Y}=$ ADD when LBO $=$ low.
BW[a:d] is don't care.

Timing waveform of write cycle

Note: $\dot{Y}=X O R$ when $L B O=$ high/ no connect. $\dot{Y}=$ ADD when $L B O=$ low.

Timing waveform of read/ write cycle

Note: $\dot{Y}=$ XOR when LBO = high/ no connect. $\dot{Y}=$ ADD when LBO = low.

AC test conditions

- Output load: For $\mathrm{t}_{\text {ZZC }}$, $\mathrm{L}_{\text {ZOE }}$, thZOE $\mathrm{t}_{\text {HZC }}$, see Figure C . For all others, see Figure B .
- Input pulse level: GND to 3V. See Figure A.
- Input rise and fall time (measured at 0.3 V and 2.7 V): 2 ns . See Figure A .
- Input and output timing reference levels: 1.5 V .

Figure A: Input waveform

Figure B: Output load (A)

Thevenin equivalent:
+3.3V for 3.3V I/ O,

Figure C: Output load (B)

Notes

1 For test conditions, see AC Test Conditions, Figures A, B, and C.
2 This parameter measured with output load condition in Figure C.
3 This parameter is sampled, but not 100% tested.
$4 \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\mathrm{HZC}}$ is less than t_{ZC} at any given temperature and voltage.
5 tCH measured as high above VIH, and tCL measured as low below VIL.
6 This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must meet the setup and hold times for all rising edges of CLK when chip is enabled.
7 W rite refers to GWE, BWE, and BW[a:d].
8 Chip select refers to CEO, CE1, and CE2.

Package dimensions

100- pin quad flat pack (TQFP)

	TQFP	
	Min	Max
A1	0.05	0.15
A2	1.35	1.45
b	0.22	0.38
c	0.09	0.20
D	13.90	14.10
E	19.90	20.10
e	0.65 nominal	
Hd	15.90	16.10
He	21.90	22.10
L	0.45	0.75
L1	1.00 nominal	
α	0°	
Dimensions in millimeters		

Ordering information

Package	Width	$\mathbf{- 1 6 6 ~ M H z}$	$\mathbf{- 1 3 3 ~ M H z}$	$\mathbf{- 1 0 0} \mathbf{~ M H z}$
TQFP	$x 32$	AS7C33128PFD32A-166TQC	AS7C33128PFD32A-133TQC	AS7C33128PFD32A-100TQC
TQFP	$x 32$	AS7C33128PFD32A-166TQI	AS7C33128PFD32A-133TQ।	AS7C33128PFD32A-100TQI
TQFP	$x 36$	AS7C33128PFD36A-166TQC	AS7C33128PFD36A-133TQC	AS7C33128PFD36A-100TQC
TQFP	$x 36$	AS7C33128PFD36A-166TQI	AS7C33128PFD36A-133TQI	AS7C33128PFD36A-100TQI

Part numbering guide

AS7C	$\mathbf{3 3}$	$\mathbf{1 2 8}$	PF	\mathbf{D}	$\mathbf{3 2 / 3 6}$	\mathbf{A}	$\mathbf{- X X X}$	TQ	C/I
1	2	3	4	5	6	7	8	9	10

1.Alliance Semiconductor SRAM prefix
2. Operating voltage: $33=3.3 \mathrm{~V}$
3.Organization: $128=128 \mathrm{~K}$
4.Pipelined or flow-through (each device works in both modes)
5.Deselect: $\mathrm{D}=$ dual cycle deselect
6. Organization: $32=x 32,36=x 36$
7.Production version: $\mathrm{A}=$ first production version
8.Clock speed (MHz)
9.Package type: TQ = TQFP
10.Operating temperature: $\mathrm{C}=$ commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{I}=$ industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

[^0]: 1 See "Notes" on page 10.

